

The MIRI medium resolution spectrometer for the James Webb Space Telescope

David Lee (UKATC)

On behalf of the MIRI spectrometer team

SPIE 6265-38, 26 May 2006

MIRI System Overview

MIRI has four functions:

- Mid-Infrared Imaging from 5 to 27μ m, 0.11" pixels, 1.3' x 1.7' field of view
- Coronagraphic Imaging (at 10.65, 11.4, 15.5, 23 μ m)
- Low Resolution Slit Spectroscopy R \sim 100 from 5 to 10 μ m
- Medium Resolution Integral Field Spectroscopy, R \sim 3000, from 5 to 28.3 μ m

MIRI Optical Module – Key Design Features

- Lightweighted, all aluminium, modular optical system
- Supported by thermally isolating carbon fibre hexapod which attaches to ISIM structure.
- Cooled to ~7K by a dedicated cryo-cooler
- Three 1kx1k SiAs detectors.
- 4 Mechanisms 3 wheels based on ISO design (filters, dichroics, gratings) and a contamination control cover
- Light enters from the telescope via the pick-off mirror
- The fields of view of the Imager and the Medium Resolution Integral Field Spectrometer are defined and separated in an "Input optics/calibration module"
- Imager optics on one side of primary structure, spectrometer on the other

MIRI spectrometer scientific requirements

- Wavelength range 5 28 microns
- Field of view not less than 3.5 x 3.5 arc-seconds squared
- Spatial sampling to match FWHM of JWST PSF
- Spectral resolving power
 - $5 \text{_m} < \lambda < 10 \mu \text{m R} > 2400$
 - $10_m < \lambda < 15\mu m R > 1600$
 - $15_m < \lambda < 28\mu m R > 800$
- Image quality: 80% EED @ $8\mu m$ < 1.1 x 80% EED of an unaberrated JWST translated to an RMS wavefront error specification for the sub-systems
- Detector format: Two 1024 x 1024 SiAs arrays with 25μm pixels

Optical path through MIRI spectrometer

Spectrometer pre-optics (SPO) layout

SPO – layout of dichroic level

SPO – dichroic wheel assembly EQM

CdTe filter

Diamond machined aluminium wheel

SPO – verification model chassis hardware

SPO – Anamorphic Pre-Optics (APO)

APO verification model hardware

SPO – Integral Field Unit

IFU assembly

Assembly carried out in class 100 clean room

SMO – opto-mechanical layout

SMO – optical layout of camera optics

SMO – grating wheel mechanical hardware

SMO – mechanical structure

SMO – qualification model assembly

QM is

- Manufactured
- Assembled
- Verified regarded alignment
- Vibration tested
- Verified regarding alignment

SMO – QM Alignment inspection

SMO – QM vibration test

Vibration Test

Modelled performance for channel 2 at 8 μm

Full end to end optical system analysis done using physical optics propagation tool in zemax

Specsim - MIRI spectrometer simulator described in Lorente et al. 6274-55

Summary and status

- Opto-mechanical design complete. Both SPO and SMO have completed CDR
- Verification model hardware
 - SPO components have been received
 - SMO CMs are ready
 - SMO M1-1, M1-2 and M3 are ready to be gold-coated
 - SMO VM Gratings on track for a June 2006 delivery
- Most of sub-system testing now complete
- Assembly of Verification Model in progress
- Delivery of spectrometer sub-systems to Rutherford Appleton
 Laboratory for integration and test into MIRI VM will be later this year

MIRI draws on the expertise of the following organizations:

Ames Research Center, USA; Astron, Netherlands Foundation for Research in Astronomy; CEA Service d'Astrophysique, Saclay, France; Centre Spatial de Liége, Belgium; Consejo Superior de Investigacones Científicas, Spain; Danish Space Research Institute; Dublin Institute for Advanced Studies, Ireland; EADS Astrium, Ltd.U.K, European Space Agency, Netherlands; Institute d'Astrophysique Spatiale, France; Instituto Nacional de Técnica Aerospacial, Spain; Institute of Astronomy, Zurich, Switzerland; Jet Propulsion Laboratory, USA; Laboratoire d'Astrophysique de Marseille (LAM), France; Lockheed Advanced Technology Center, USA; Max-Planck-Insitut für Astronomie (MPIA), Heidelberg, Germany; Observatoire de Paris, France; Observatory of Geneva, Switzerland; Paul Scherrer Institut, Switzerland; Physikalishes Institut, Bern, Switzerland; Raytheon Vision Systems, USA; Rutherford Appleton Lavoratory (RAL), UK; Space Telescope Science Institute, USA; Toegepast-Natuurwetenschappelijk Ondeszoek (TNO-TPD), Netherlands; U.K. Astronomy Technology Centre (UK-ATC); University College, London, UK; Univ. of Amsterdam, Netherlands; Univ. of Arizona, USA; Univ. of Cardiff, UK; Univ. of Cologne, Germany; Univ. of Groningen, Netherlands; Univ. of Leicester, UK; Univ. of Leiden, Netherlands; Univ. of Leuven, Belgium; Univ. of Stockholm, Sweden, Utah State Univ. USA

SPO – VM dichroic wheel assemblies

